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ABSTRACT
This paper presents a compiler algorithm and several opti-
mization techniques to exploit a DRAM memory characteris-
tic(page mode) automatically. A page-mode memory access
exploits a form of spatial locality, where the data item is
in the same row of the memory buffer as the previous ac-
cess. Thus, access time is reduced because the cost of row
selection is eliminated. The algorithm increases frequency of
page-mode accesses by reordering data accesses, grouping to-
gether accesses to the same memory row. We implemented
this algorithm and present speedup results for four multi-
media kernels ranging from 1.25 to 2.19 for a Processing-In-
Memory (PIM) embedded DRAM device.

1. INTRODUCTION
Memory delays are a major performance bottleneck in
embedded-DRAM systems, where the memory latencies seen
by the processor are dominated by the on-chip-DRAM access
time. DRAM modules support an efficient page-mode access,
where a memory access to a location currently in the DRAM
open-row buffer fetches the data directly from that buffer,
eliminating the cost of fetching the row from the DRAM
array. Page-mode accesses, when applicable, are supported
by the DRAM’s memory controller. To fully exploit lower
latency page-mode accesses, the user or the compiler must
reorganize the computation so that accesses to a same mem-
ory row are grouped together, and there are no intervening
accesses to other rows.

In the past decade, most of the research on compiler opti-
mizations for the memory hierarchy focused on exploiting
data locality in caches [4, 7, 8, 9, 10, 15, 24, 25]. Al-
though cache optimizations and page-mode optimizations
have the common goal of exploiting data reuse (in caches
or in the DRAM’s open row, respectively), the analysis and
code transformations required are different. For example,
loop tiling is used to exploit temporal reuse in caches by
bringing together in time loop iterations that access the same
data. The goal is to keep the data accessed in a tile in cache,
and the order of the accesses within a tile is not important.
On the other hand, exploiting page-mode accesses requires
not only bringing together in time loop iterations that access
data in a same memory row, but also grouping these data
accesses together. Exposing opportunities for grouping ac-

cesses to a same array may require transformations such as
unroll-and-jam, to bring accesses issued in distinct loop it-
erations to the body of the transformed loop, and statement
reordering, to group the memory accesses.

Recent research has proposed to exploit page-mode accesses
through manual code transformations [19, 17, 3]. This paper
presents a compiler algorithm for exploiting page-mode auto-
matically. Our algorithm is implemented in the SUIF com-
piler infrastructure [13], and it leverages well-known com-
piler analyses and code transformations to identify poten-
tial page-mode accesses and group these memory accesses
together. The algorithm is applicable to loop-based compu-
tations in general embedded systems and it is also applicable
to embedded-DRAM systems designed to exploit the large
on-chip bandwidths by transferring and processing objects
larger than a machine word [23, 1].

We have performed an experimental evaluation of our al-
gorithm on a Processing-In-Memory (PIM) device that is
part of the DIVA architecture [12], where the PIM pro-
cessor is capable of transferring and processing 256-bit ob-
jects (superwords) in parallel. Our results show the perfor-
mance improvements from exploiting page-mode accesses,
and the combined benefits of page-mode accesses and other
compiler optimizations targeting architectures with support
for superword-level parallelism1 (SLP) [16, 22]. We obtain
speedups ranging for 1.25 to 2.19 for four multimedia ker-
nels. This paper makes the following contributions:

• A new compiler algorithm for automatically exploiting
page-mode memory accesses;

• An experimental evaluation of the algorithm on four
data-intensive multimedia kernels;

• A discussion of practical issues that must be addressed
when exploiting page-mode accesses in combination
with other compiler optimizations.

This paper is organized as follows. Section 2 motivates our
approach using a simple example. Section 3 introduces our
algorithm for exploiting page-mode memory accesses. Sec-
tion 4 presents experimental results on a set of four multi-
media kernels. Section 5 addresses practical issues which are
the subject of future work. Related research is discussed in
Section 6 and Section 7 concludes the paper.

2. MOTIVATION
Figure 1 illustrates the benefits of page-mode accesses using
a simple loop nest with two array references. Assuming that

1Fine grain SIMD parallelism in a register larger than a
machine word



Ref. Loop j Loop i
A[j][i] m ∗ RMLatency n ∗ m ∗ RMLatency
B[i] m ∗ RMLatency n ∗ m ∗ RMLatency

Total 2 ∗ n ∗ m ∗ RMLatency

(a) Original

Ref. Loop j Loop i′

A[j][i] m ∗ RMLatency n
4
∗ m ∗ RMLatency

A[j][i+1] m ∗ PMLatency n
4
∗ m ∗ PMLatency

A[j][i+2] m ∗ PMLatency n
4
∗ m ∗ PMLatency

A[j][i+3] m ∗ PMLatency n
4
∗ m ∗ PMLatency

B[i] m ∗ RMLatency n
4
∗ m ∗ RMLatency

B[i+1] m ∗ PMLatency n
4
∗ m ∗ PMLatency

B[i+2] m ∗ PMLatency n
4
∗ m ∗ PMLatency

B[i+3] m ∗ PMLatency n
4
∗ m ∗ PMLatency

Total n
2
∗ m ∗ RMLatency + 3n

2
∗ m ∗ PMLatency

(b) After unroll-and-jam and reordering

Table 1: Memory Latency Computation

the sizes of arrays A and B are larger than the DRAM’s
open-row buffer, all array references in Figure 1(a) are in
random-mode, since reference B[i] displaces the DRAM row
containing A[j][i] from the open-row buffer and vice-versa.

For the same number of memory accesses in this loop nest,
we can increase the page mode memory accesses by applying
a series of code transformations, as shown in Figure 1(b).
First, unroll-and-jam is used to unroll the outer i loop and
fuse together the resulting inner j loop bodies. Unroll-and-
jam creates opportunities for page-mode accesses by moving
array references from successive loop iterations of the outer
loop into the body of the transformed inner loop. Once the
loop is unrolled and the copies of the loop body are fused,
accesses to the same memory page in the loop body may
be grouped together by reordering the memory accesses in
the transformed loop body, if the reordering does not violate
data dependences.

In Figure 1(b), following unroll-and-jam, where the i loop is
unrolled by a factor of 4, references to the same array (A or
B) in the body of the transformed loop are grouped together.
This results in page-mode accesses for all references in the
loop body, except leading references A[j][i] and B[i], which
are in random mode.

Table 1 shows the total memory access cost for the code in
Figures 1 (a) and (b), if we assume that latencies for random
mode and page mode accesses are uniform, and that accesses
are not going through cache. Assuming that random-mode
latency is three times the page-mode latency as in [14], loop
(a) has a total latency cost of 6 ∗n ∗m ∗PMLatency, while
(b) has a cost of 3∗n∗m∗PMLatency, a factor of 2 difference
in overall memory latency.

This example shows the potential for improving performance
in embedded DRAM devices through the previously-described
code transformations. To expose opportunities for page-
mode accesses by applying unroll-and-jam and memory ac-
cess reordering, a compiler algorithm must: (1) determine
the safety of these code transformations and select a loop
for which unrolling is profitable; (2) select an unroll factor
that increases page-mode accesses while not causing register

for(i=0;i<n;i++){
for(j=0;j<m;j++){

load A[j][i]
load B[i]

...
}

}

(a) Original

for(i=0;i<n;i+=4){
for(j=0;j<m;j++){

load A[j][i]
load A[j][i+1]
load A[j][i+2]
load A[j][i+3]
load B[i]
load B[i+1]
load B[i+2]
load B[i+3]

...
}

}

(b) After unroll-and-jam and reordering

Figure 1: Unroll-and-jam and Reordering

spilling; and, (3) transform the code to reorder the memory
accesses. In the next section we present our compiler algo-
rithm for exploiting page-mode accesses, which includes the
three steps above.

We have developed this algorithm in the context of a com-
piler for DIVA, a system-architecture that incorporates
processing-in-memory embedded DRAM devices as smart-
memory co-processors in an otherwise conventional system [12].
Although the proposed compiler algorithm is not specific
to the requirements of the DIVA architecture, we describe
the algorithm from the viewpoint of an architecture that
supports superword-level parallelism, with an instruction set
akin to multimedia extensions such as Intel’s SSE and Mo-
torola’s AltiVec. Superword-level parallelism refers to per-
forming the same operation in parallel on multiple fields of
a superword, which is an aggregate object larger than a ma-
chine word. In the following algorithm description, we will
refer to register width to support the notion that a machine
might have different register widths for distinct objects. If a
machine does not support superword-level operations, then
the register width is the same as the machine word.

In previous work, we presented an algorithm for exploit-
ing spatial and temporal locality in superword register files
in a compiler that already supports superword-level paral-
lelism [22]. In this paper, we show that with a similar ap-
proach we can also exploit spatial locality in the page of a
DRAM memory array.

3. ALGORITHM
In this section we introduce a compiler algorithm for exploit-
ing page-mode memory accesses. Our algorithm is applicable
to loop nests with array references in the loop body, where
the array subscript expressions are affine functions of the
loop index variables. Only array accesses are reordered by
the algorithm, since it is difficult to determine whether two
scalar accesses are on the same memory page. For presen-
tation purposes, we make some simplifying assumptions as



2. Control register pressure

1. Select a loop to unroll

3. Align the loop to page boundaries

4. Unroll-and-jam

5. Reorder memory accesses

Figure 2: Algorithm

follows.

1. Array objects are aligned at memory page boundaries.

2. The lowest dimension sizes of array objects are multi-
ples of a memory page size.

3. The compiler backend does not change the memory
access order generated by the algorithm.

Some of these assumptions can be removed by modifying the
compiler backend (1,3) or by padding array objects (2).

The algorithm presented in this paper unrolls a single loop
in a loop nest, since in practice unrolling more than one loop
could create register pressure and intruction cache misses. A
set of heuristics is used to select which loop to unroll and its
unroll amount. These heuristics result in a fast algorithm
that is effective for the benchmarks presented in Section 4.

However, unrolling multiple loops in a loop nest might ex-
pose more opportunities for page-mode accesses than when
unrolling a single loop. In previous work [22] we present an
algorithm for exploiting superword-level locality which uses
unroll-and-jam to expose data reuse, and unrolls multiple
loops in a nest. The computation of the unroll amounts re-
quires a complex analysis to determine the exact number of
superword registers needed to keep the data accessed in the
loop. This complexity is due to several factors such as group
reuse among copies of a reference created by unrolling (which
may reuse data in superword registers) and self-spatial reuse
of the original references.

A more complex algorithm for exploiting page-mode memory
accesses which would consider multiple loops for unrolling is
the subject of future work, and we plan to leverage our anal-
ysis and algorithm for selecting unroll amounts described
in [22].

Figure 2 illustrates the steps of the algorithm, which are de-
scribed in the remainder of this section. The first step selects
which loop to unroll, after determining the safety of the code
transformations (unroll-and-jam and statement reordering).
The second steps selects an unroll factor that increases page-
mode accesses while not causing register spilling. The last
three steps apply the code transformations to the loop nest.

Selecting a Loop To Unroll The first step of the al-
gorithm selects a loop to unroll, based on the number of
random-mode memory accesses of the loop nest after ap-
plying unroll-and-jam. The algorithm uses data dependence
information to determine the safety of unroll-and-jam and
to prevent selection of unroll amounts greater than the de-
pendence distance if inner loop dependence distances are
negative.

For each loop l in the loop nest, the algorithm computes the
unroll amount Xl and its corresponding number of random-
mode accesses Rl, such that Rl is the smallest number of
random-mode memory accesses if l is selected to be unrolled
(assuming that references to a same memory page can be
grouped together). Then the algorithm compares the num-
ber of random-mode accesses of each loop in the nest and
selects the loop with the smallest Rl.

When computing the unroll amount Xl that minimizes Rl,
the algorithm considers only references that are loop-variant
with l in the lowest dimension. For a reference that is loop-
variant with l in the lowest dimension, unrolling l and jam-
ming the copies of l in the loop body creates opportunities
for page-mode accesses between the copies of the original ref-
erence. On the other hand, unrolling loop l does not change
the total number of random-mode accesses generated by ref-
erences that are loop-variant with l in one of the higher di-
mensions. Loop-independent dependences can be removed
by locality optimizations such as scalar replacement [2] or
superword replacement [22].

For each loop l the smallest unroll amount that minimizes
Rl is computed as in Equation 1.

Xl =
P

mina∈A(T (a) ∗ C(a, l))
(1)

where P is the memory page size, A is the set of array ref-
erences in the loop nest which are loop-variant with l in
the lowest dimension, a is an array reference in A, T (a) is
the type size of a and C(a, l) is the coefficient of the index
variable l in the lowest-dimension subscript of a.

After computing the unroll amounts, the algorithm com-
putes the corresponding number of random-mode memory
accesses Rl, with the goal of selecting the loop with smallest
Rl. For each loop l, the number of random-mode accesses Rl

is computed as the number of distinct pages in the memory-
page footprint of A, Fl(A, Xl) (assuming that the algorithm
can group together references to a same page). In previ-
ous work [22], we present the computation of the superword
footprint of a set of array references in a loop nest, which
consists of the number of distinct superwords accessed by the
references, a function of the unroll amounts. The memory-
page footprint can be computed in a similar way to that of
the superword footprint. First, the set of references is par-
titioned into groups of uniformly generated references [25],
that is, references to the same array such that, for each ar-
ray dimension, the array subscripts differ only by a constant
term2. Then, for each group of references, the algorithm
computes the number of pages accessed in the unrolled loop
body. Finally, the total number of pages is computed as the
sum of those of each group of uniformly generated references.

Controlling Register Pressure After selecting a loop
l to unroll, the algorithm adjusts the unroll amount of the
selected loop to avoid register pressure and register spilling,
which could offset the benefits of unroll-and-jam.

In a previous paper [22] we presented the computation of the
number of registers required to keep the data accessed by the
references in the loop nest after applying transformations
for increasing locality in the superword register file. Here
we present a simplification of this algorithm to provide the

2We assume that two or more references that access the same
array but are not uniformly generated access distinct data
in memory, which results in a conservative estimate of the
number of memory pages.



intuition behind our approach.

We compute an upper bound of the total number of registers
that can be simultaneously live by partitioning the references
in the loop nest in groups of uniformly generated references
and computing the superword footprint of each group.

For example, the number of registers required for a group
that contains a single reference a that is variant with l is
given by Equation 2, assuming C(a, l) = 1.

NRl(a) =
Xl × T(a)

W
(2)

where W is the register width in bytes (for example, W =
4 for a 32-bit scalar register, and W = 16 for a 128-bit
superword register such as the AltiVec’s and T (a) is the
type size of a in bytes. Equation 2.

The superword footprint of a group consists of the union of
the footprints of the individual references, as some of the
reference footprints may overlap, depending on the distance
between the constant terms in the array subscripts.

The total number of registers required (TNR) to keep the
data accessed in the loop nest is computed as the sum of
the number of registers required for each group of uniformly
generated references. If the total number of registers is larger
than the number of registers available, the algorithm adjusts
the unroll amount Xl, by dividing it by the ratio of TNR
and the number of available registers NREG.

Xl =

$
Xl�

TNR
NREG

�
%

(3)

The number of available registers NREG is given by number
of registers in the register file minus the number of registers
reserved by our algorithm for temporary storage.

Since the smallest type size is used in Equation 1, all refer-
ences that have spatial reuse carried by loop l can exploit
spatial reuse fully at the memory page level. Therefore,
choosing a loop l that has the smallest random-mode ac-
cesses when unrolled by Xl is a reasonable choice. Dividing
it evenly if too many registers are used, as in Equation 3, will
result in a solution that is also aligned to a page boundary
at the beginning of the loop. However, choosing a differ-
ent loop can result in different register requirements. For
example, if a loop is selected and then its unroll amount is
reduced to half because of register pressure, there can be an-
other loop that results in more random-mode accesses but
requires fewer registers, leading to less overall random-mode
accesses than the initial selection.

Aligning the Loop To Page Boundaries If the starting
addresses of the memory accesses in the unrolled loop body
are not aligned to a page boundary, each set of memory ac-
cesses to a same array will have one additional random-mode
access per iteration. To remove these unnecessary random-
mode accesses, step 4 of the algorithm splits the iteration
space of the chosen loop into at most three loops (head, body
and tail), so that the starting addresses in loop body are
aligned to page boundaries. The body loop contains all it-
erations that access memory between the first and the last
page boundary, with the head loop performing previous it-
erations starting from the lower bound of the original loop,

for(i=0; i<1280; i+=64){
Load A[i+1]
Load A[i+2]

...
Load A[i+64]
Load B[i+1]

...
}

(a) Unaligned

for(i=0; i<63; i++){
Load A[i+1]
Load B[i+1]

...
}
for(i=63; i<1279; i+=64){

Load A[i+1]
Load A[i+2]

...
Load A[i+64]
Load B[i+1]

...
}
for(i=1279; i<1280; i++){

Load A[i+1]
Load B[i+1]

...
}

(b) Aligned

Figure 3: Alignment by Iteration Space Splitting

and the tail loop computing subsequent iterations up to the
upper bound of the original loop.

Figure 3(a) shows an example of an unrolled loop with mis-
aligned memory references. Assuming that array A is aligned
to a memory page, the memory accesses for one iteration of
the unrolled loop span a page boundary. In (b), the itera-
tion space of the original loop is split so that the memory
accesses in the body loop start and end at page boundaries.
The lower bound of the body loop and the lower bound of the
tail loop are computed from the array subscript expressions
and the loop bounds as follows. The earliest iteration where
the most array references are aligned on a page boundary
is used as the lower bound of the body loop. Let a be a
representative reference to be aligned, l the loop index vari-
able for the selected loop, and lb and ub the lower and upper
bounds for l. To derive the loop bounds for the copies of
the selected loop resulting from iteration space splitting, we
begin with the starting address, addr, of the references when
l = lb, where addr = aligned + offset. Here, aligned refers
to the largest multiple of the page size less than addr and
offset is the offset of addr within a page.

Assuming the stride of a is 1, the lower bounds of the body
loop (split1) and the tail loop (split2) are computed by the
following equations where P is the memory page size and
T (a) is the type size of a.

split1 = lb +
P

T (a)
− offset mod P

T (a)

split2 = ub − (ub − split1) mod
P

T (a)

The head loop is not needed if the reference is aligned, as
is the case when offset mod P = 0. If lb is constant, split1
and split2 can be computed at compile time. Otherwise,
they are computed at run time.

If the selected reference has non-unit stride, the solution is
much more complex. In this case, we build a modular linear
equation and choose the smallest solution [5].

Reordering Memory Accesses Finally, the reordering
step hoists loads to the top of the loop body and sinks stores
to the bottom. While being hoisted / sunk, the loads / stores
to a same array are grouped together and sorted by their



for(i=32; i<N; i+=64){
load A[i + 0] (RMA)
load A[i + 32] (RMA)
load A[i + 8] (RMA)
load A[i + 40] (RMA)
load A[i + 16] (RMA)
load A[i + 48] (RMA)
load A[i + 24] (RMA)
load A[i + 56] (RMA)

...
}

(a) Unsorted

for(i=32; i<N; i+=64){
load A[i + 0] (RMA)
load A[i + 8]
load A[i + 16]
load A[i + 24]
load A[i + 32] (RMA)
load A[i + 40]
load A[i + 48]
load A[i + 56]

...
}

(b) Sorted

Figure 4: Sorting Offset Addresses

Parameters Value Unit
Random-mode latency 12 Cycles

Page-mode latency 4 Cycles
Page size 256 Bytes

Table 2: Simulation Parameters

offset addresses. When there are unaligned array references
even after aligning the loop, sorting the offset addresses can
reduce the number of random-mode accesses. Figure 4 shows
an example where the page size includes 64 elements of array
A. All eight memory accesses are in random mode before
sorting. After sorting the offset addresses, only two random-
mode accesses remain.

for(...){
load A (RMA)
load B (RMA)

...
Computation

...
store A (RMA)
store B (RMA)

}

(a) Before

for(...){
load A
load B (RMA)

...
Computation

...
store B
store A (RMA)

}

(b) After

Figure 5: Grouping loads and stores

This step also groups loads and stores to the same array
when possible, to exploit page mode among them. There can
be page-mode accesses between loads and stores if the last
load and the first store access the same page, and there are
no intervening memory accesses between them. The same is
true between the last store of an iteration of the innermost
loop and the first load of the next iteration. Using this tech-
nique, at most 2 random-mode accesses per iteration can be
eliminated. Figure 5 (a) shows an example where two array
objects are read and written. Assuming all loads and stores
to the same array objects access the same memory page, the
loop in (a) results in four random-mode accesses whereas (b)
has only two random-mode accesses per iteration.

4. EXPERIMENTS
Although our algorithm is applicable to general embedded-
DRAM systems, for the experiments presented in this paper
we used a compiler framework that we have built for DIVA,
as previously described. The DIVA PIM device has a 256-
bit datapath for executing superword operations in parallel.
In addition to a conventional scalar register file, the DIVA
PIM processor has 32 256-bit registers (each of which can be

Name Description Input Size
VMM Vector-matrix multiply 64 elements
MMM Matrix-matrix multiply 64 elements
YUV RGB to YUV conversion 32K elements
FIR Finite impulse response filter 256 filter, 1K signal

Table 3: Banchmark programs

Parallelization(SLP)

- Unroll amount computation
- Unroll loop selection
- Register spill control
- Alignment to page boundaries
- Unroll-and-jam

C program

Memory access reordering

Superword replacement(SWR)

DIVA gcc

DIVA Simulator(DSIM)

SLP 
version

UNROLL 
version

PMA
version

AltiVec extended C program

Figure 6: Experimental Flow

treated as eight 32-bit operands, sixteen 16-bit operands or
32 8-bit operands). Thus, for data allocated to superword
registers, width W from Section 3 is 256, and for scalar reg-
isters W is 32. As the DIVA PIM devices contain no data
cache, exploiting spatial locality in the memory pages can
have significant impact on application performance.

A prototype of the DIVA PIM chip has been fabricated re-
cently [6], but the complete DIVA system is not available for
our experiments at the time of this writing. Therefore, we
used a cycle-accurate DIVA simulator(DSIM) [6], which is
modified from RSIM [20]. Table 2 shows the simulation pa-
rameters for the memory system which closely match those
of the IBM Cu-11 embedded DRAM macro [14]. In gen-
eral there can be multiple DRAM macros and multiple open
pages in a single chip, but for our experiments we assume
that only one memory page is open at any given time.

We implemented the bulk of the algorithm presented in the
previous section, and integrated it into the Stanford SUIF
compiler. In our current implementation, we have not im-
plemented alignment to page boundaries or combining loads
and stores for page mode accesses. However, these steps of
the algorithm do not affect the results for the four bench-
marks used. The input to the modified SUIF compiler is a
C program, and the output is an AltiVec-extended C pro-
gram [18] which, in turn, is translated by a preliminary ver-
sion of the DIVA gcc backend.

Table 3 shows the four kernels used to evaluate the effec-
tiveness of the algorithm. The kernels represent data in-
tensive applications in scientific and multimedia domains.
Figure 6 shows the experimental flow. The main algorithm
involves selecting unroll factors, performing unroll-and-jam
and memory access reordering, and is represented by the



hashed rectangles in Figure 6.

As previously stated, this algorithm is implemented as part
of a compiler that exploits superword-level parallelism and
locality in the superword register file. Thus, the experi-
mental methodology also includes optimizations to exploit
superword-level parallelism (SLP). Further, we exploit spa-
tial and temporal locality in the superword register file through
a combination of unroll-and-jam and superword replacement
(SWR). Superword replacement is applied after unroll-and-
jam to replace unnecessary superword memory accesses with
references to superword temporaries that will then be allo-
cated to superword registers by a backend compiler [22]. In
our previous work, we selected unroll factors for unroll-and-
jam that maximize reuse in superword registers; here, we use
the unroll factors determined by the algorithm in Section 3,
which are likely to be larger than in our previous work. In
some sense, the optimizations for page mode memory ac-
cesses are complementary to exploiting SLP and locality in
superword registers, and the page mode optimizations are
difficult to isolate in our compiler. In fact, because the SLP
and SWR optimizations reduce the number of memory ac-
cesses, we will see less benefit from the page mode optimiza-
tions than if considered in isolation.

We use as our baseline the SLP version of the code with
no unrolling beyond what is required to exploit paralleliza-
tion of the innermost loop. The UNROLL version includes
unroll-and-jam, where the loop selected by the algorithm in
Section 3 is unrolled by the chosen amount, and inner loop
bodies are fused together. As compared to the baseline ver-
sion, this version isolates the benefits of unroll-and-jam and
superword replacement in terms of reduced memory accesses
and less loop overhead, as compared to the baseline version.
The PMA version reflects the performance improvements
due to memory access reordering, yielding the full benefit
of the optimizations for page-mode accesses.

In these experiments, we used optimization level -O1 for
the DIVA gcc backend rather than a higher level of opti-
mization. This was required to avoid reordering of memory
accesses in subsequent optimization passes, which occurs at
higher levels of optimization. Since reordering commonly oc-
curs in backend optimizations, we discuss the implications of
combining the page-mode optimizations with other backend
compiler techniques in the next section.

For all programs but YUV, the algorithm was able to unroll
the selected loop by the unroll factor determined by Equa-
tion 1. For YUV, which references six distinct arrays, this
unroll factor was too large and resulted in register spilling.
The algorithm reduced the unroll amount by half and the
register spilling was eliminated.

We first consider how the optimizations for exploiting page-
mode memory accesses impact memory stall time. In Fig-
ure 8 shows the normalized execution times broken down
into processor busy time and memory stall time, derived
from simulation. The UNROLL version sees a significant re-
duction in both processor busy time (9% to 60%) and mem-
ory stall time (25% to 71%). The primary reason for this
is that superword replacement has eliminated a large num-
ber of memory accesses, which not only reduces memory
stall time, but also reduce processor busy time by eliminat-
ing address calculation and instruction issue associated with
the eliminated memory accesses. Further, reduction in loop
control overhead also reduces processor busy time. For all
programs, the PMA version further reduces memory stall

for(i = 0; i < 64; i++)
for(j = 0; j < 64; j++)

for(k = 0; k < 64; k += 8){
load C[i][j]
load B[i][k]
load A[j][k]

...
store C[i][j]

}

(b) VMM

for(i = 0; i < 64; i++)
for(j = 0; j < 64; j += 8)

for(k = 0; k < 64; k++){
load C[i][j]
load A[i][k]
load B[k][j]

...
store C[i][j]

}

(a) MMM

Figure 7: SLP versions of VMM and MMM
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time by 21% to 33%. As compared to the UNROLL version,
we have not eliminated any instructions, but rather have
converted random-mode accesses to page-mode accesses.

Next we consider in Figure 9 the percentage of all memory
accesses that are in page mode, with the remainder in ran-
dom mode. The percentages of page-mode accesses ranges
from 25% to 37% for the baseline version of the programs.
We see a decrease in page-mode accesses as a percentage of
memory accesses for most programs for the UNROLL ver-
sion, ranging from 6% to 32%. This effect is because super-
word replacement has removed a large number of memory
accesses, and the remainder tend to be in random mode. For
example, in the VMM loop shown in Figure 7(a) after SLP,
references to C[i][j] in the k-loop are loop-invariant after
unrolling, and are usually removed, but were page-mode ac-
cesses in the SLP version due to the preceding store to the
same location. In MMM, the page-mode percentage actually
increases for the UNROLL version, as can be seen in Fig-
ure 7(b). References to A[i][k] are random-mode accesses,
and are eliminated by superword replacement. For the PMA
version, which reflects the same number of memory accesses
as the UNROLL version, the percentages of page-mode ac-
cesses range from 63% to 87%.

These results show that our algorithm has been successful
at increasing the percentage of page-mode accesses and re-
ducing the memory stall time. We now see how the ap-
proach impacts the overall performance. Figure 10 shows
the speedups for the SLP, UNROLL and PMA versions of
Figure 6. Overall speedups as compared to the SLP base-
line range from 1.25 to 2.19. Most of this speedup comes
from the 1.19 to 1.89 improvement from unroll-and-jam and
superword replacement, as can be seen from the UNROLL
version. The speedup of the PMA version over the UNROLL
version ranges from 1.04 to 1.16.

5. IMPLEMENTATION ISSUES
In this section, we consider in general terms how to in-
corporate this algorithm into current and future compilers.
First, the compiler backend optimizations must be aware
that page-mode optimizations are being performed. Other-
wise, instruction reordering optimizations to increase instruction-
level parallelism may undo the effect of the page-mode opti-
mizations. A simple solution is to keep the relative order of
memory operations intact when performing instruction re-
ordering. There is an interesting tradeoff space that must

be considered, since page-mode optimizations which favor
memory accesses to the same page may potentially lengthen
the critical path to performing computations, where mul-
tiple operands from different pages may be required. This
potential problem is mitigated if there are a large number
of memory units that can operate in parallel, or if there are
multiple memory pages from which data can be accessed
rather than the single page used in our experiments.

A second issue is how to combine this approach with cache
optimizations for devices that have on-chip data caches. In
cache-based architectures, the page-mode optimizations are
still applicable as long as the unrolled footprint for an object
exceeds the cache line size. In such a case, the spatial locality
within the memory page complements spatial locality within
a cache line.

6. RELATED WORK
Previous research has identified the benefits of exploiting
page-mode DRAM accesses [19, 17, 3, 21, 11]. Moyer mod-
eled memory systems analytically and developed a compiler
technique called access ordering that reorders memory ac-
cesses to better utilize the memory system [19]. McKee et
al. described a Stream Memory Controller (SMC) whose ac-
cess ordering circuitry attempts to maximize memory system
performance based on the device characteristics [17]. Their
compiler is used to detect streams but access ordering and
issue is determined by the hardware. Chame et al. manu-
ally optimized an application for a PIM-based (embedded-
DRAM) system [3] by applying loop unrolling and memory
access reordering to increase the number of page-mode ac-
cesses.

Panda et al. have developed a series of techniques to exploit
page-mode DRAM access in high-level synthesis [21]. Their
techniques include scalar variable clustering, memory access
reordering, hoisting and loop transformations. While their
ASIC design was able to exploit page-mode memory access,
they do not describe an algorithm for automatic code gen-
eration. Grun et al. have optimized a set of benchmarks
to better utilize efficient memory access modes for their IP
library based Design Space Exploration [11]. However, their
focus was on accurate timing models of the hardware system
description.

This paper is distinguished from previous research as the
design and implementation of a compiler algorithm to ex-



ploit page-mode automatically. Although the experiments
are performed for a PIM-based system [12], this compiler
framework is applicable to embedded-DRAM systems and
can also be used as a preprocessor for high-level synthesis.

7. CONCLUSION
This paper presented a compiler algorithm for exploiting
page-mode memory access in embedded-DRAM systems. Our
compiler algorithm has been implemented in the Stanford
SUIF compiler infrastructure and evaluated for four scientific
and multimedia kernels. The speedups achieved by exploit-
ing page-mode memory access alone range from 1.04 to 1.16
for four multimedia kernels, resulting in overall speedups
ranging from 1.25 to 2.19 when combined with optimizations
targeting superword-level parallelism and locality. These
results show that there is a distinct benefit in exploiting
page-mode memory access in embedded systems, where the
DRAM access time dominates the memory latency seen by
the processor. Furthermore, our results show that for em-
bedded systems with support for superword-level parallelism [23,
1, 12], optimizations for exploiting the DRAM’s page-mode
accesses are complementary to optimizations for superword-
level parallelism and superword-level locality.
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